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Abstract

At the National Meteorological Center we have been running in
real time since 1990 a system to predict the forecast skill of the
global spectral model, using as predictors the agreement of an
ensemble of operational forecasts from various centers, the
persistence in the forecast, and the amplitude of the anomalies.
These are used in a multiple regression scheme with a 60-day
training period, and we predict the regional anomaly correlation of
the 00Z NMC global forecast from days 1 to 6. The most important
predictor of skill is the agreement between the NMC global forecast
started at OOZ, out to 6 days, and four other 12 hour "older"
forecasts (JMA, UKMO, and ECMWF, as well as the average of the NMC
forecast at OOZ with the previous day's forecast), so that this is
like a "poor person's" Monte Carlo ensemble forecast. The other
predictors have been selected to add to the predictive capability
of the agreement alone, and together they quantify the factors that
forecasters use subjectively when evaluating the available
forecasts. These predictions are available to NMC forecasters on
workstations and to outside users through Internet.

The predictive ability of this system, compares favorably with
recent theoretical and experimental studies. The correlation
between predicted and observed forecast skill seems to be best in
regions where forecast skill varies significantly, and the seasonal
variation in predicting the skill is small except in the tropics.
The overall performance shows that these predictors include enough
information about forecast skill to justify further development of
skill predictions based on larger forecast ensembles and on more
sophisticated statistical techniques.
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1. Introduction

Since 1979, when the Global Weather Experiment took place, the

skill of the operational forecasts has increased substantially in
the short, medium and even longer ranges, both in the Northern and
the Southern Hemispheres and in the tropics (e.g., Kalnay et al,
1990, Bengtsson, 1991). Nevertheless, forecast skill remains
highly variable from day-to-day, region-to-region, and season-to-
season. It is clear that the utility of the numerical forecasts
would be considerably enhanced if, for example, a human forecaster
could know that today's forecast will remain skillful for more than
6 days, or, conversely, that today's 3-day forecast will be much

less reliable than normal. This fact prompted the often quoted
statement of Tennekes et al. (1987) that "no forecast is complete
without a forecast of the skill".

Epstein (1969) was the first to attempt to develop a method to
predict the skill of dynamical forecasts. He introduced a

stochastic-dynamic method for predicting the probability
distribution of the model variables. This scheme, which requires
prognostic equations for the covariances of the model variables, is

too computationally expensive to be applied to realistic models.
Epstein also suggested the use of ensemble forecasting for this
purpose. Leith (1974) showed that in simulated "Monte Carlo
Forecasting", when the perturbations were generated by random
errors representative of the analysis uncertainty, even a small
number of forecasts could improve the skill of the forecast mean
and provide an estimate of its error. Hoffman and Kalnay (1983)
suggested the use of the "Lagged Average Forecasting" (LAF) method,
and showed that, at least for a simple model, LAF resulted in
better predictions of the skill than the Monte Carlo method.

In principle, the theory of predictability provides the basis
for prediction of the forecast skill. The fundamental theorem of
predictability of Lorenz (1963) states that dynamically stable
systems are infinitely predictable, whereas unstable systems have
a finite limit of predictability. From this we can also conclude
that the more unstable the atmosphere is, the less predictable it
will be. In recent years there have been basically three
approaches to the prediction of the forecast skill, all of which
attempt to relate forecast skill to some measure of atmospheric
stability:

a) Ensemble forecasting, which exploits the relationship between
forecast agreement and forecast skill (e.g., Kalnay and Dalcher,
1987, Palmer and Tibaldi 1988, Murphy 1988, 1990, McCalla and
Kalnay 1988, Kalnay and Ham, 1989, Tracton et al 1989, Baumhefner,
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1991, Ebisuzaki and Kalnay 1991, Wobus and Kalnay 1991, Molteni and
Palmer, 1993). In this approach it is assumed that if the model is
sufficiently realistic, the same instabilities that increase the
distance between a forecast and the real atmosphere, will also
increase the "spread" among the members of the forecast ensemble.
Two methods to generate perturbations for ensemble forecasting were
recently implemented at NMC (Tracton and Kalnay, 1993, and Toth and
Kalnay, 1993) arid at ECMNF (Palmer et al 1992, Molteni and Palmer,
1993, Buizza, 1993), but are not yet used for prediction of the
skill (see below).

b) Dependence of forecast skill on atmospheric regime, which is
related to the variable stability properties of the large scale
flow (e.g. Palmer 1988, Palmer and Tibaldi, 1988, Tracton et al,
1989, Tibaldi and Molteni, 1989, Molteni and Palmer, 1991).
Similar to this approach are studies relating forecast skill to
atmospheric persistence (e.g., Branstator 1986, Chen 1989), or to
the Lorenz Index (Kimoto et al, 1991).

c) Regional prediction of maximum error growth based on the use of
the adjoint of the forecast model (e.g., Barkmeijer, 1993,
Houtekamer, 1993).

Barker (1991) performed a large number of Monte Carlo ensemble
predictions using a simple but realistic primitive equations model
(Roads, 1987). His results were rather discouraging: He used a
large number of ensemble members, of the order of a hundred, and a
"perfect model" simulation (i.e., one in which the same model was
used to simulate the atmospheric evolution and the model
forecasts). However, even under these favorable conditions, the
correlation between the hemispheric forecast rms error, and the
"rms spread" among the Monte Carlo ensemble members, varied between
only 0.35 and 0.55 for the first 10 days of the forecast, and was
even smaller later. This suggests that there is an upper limit for
the predictability of the skill obtainable from ensemble
forecasting. This is because, given a perfect model and a perfect
knowledge of the statistical uncertainty in the initial conditions,
the spread of ensemble trajectories can perfectly predict how fast
another ensemble of trajectories (one of which could be the
atmospheric trajectory) will drift apart. However, the ensemble
spread cannot perfectly predict how a single forecast will compare
with a single verification (H. van den Dool, 1992, pers. comm.).
Moreover, Barker pointed out that when using Monte Carlo (random)
perturbations, even if they represent perfectly the statistics of
the simulated random analysis errors, the forecast of the skill has
zero correlation between predicted and observed rms errors at the
initial time. It is only after the growing perturbations organize
themselves- and- dominate the error growth that the correlation
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between forecast agreement and forecast skill starts to increase.
For this reason, his correlation between predicted and observed
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Palmer and Tibaldi (1988) and Molteni and Palmer (1991), have
developed an experimental system to forecast the skill of the
operational ECMWF forecasts. They use several predictors based on
the ECMWF operational forecast, and predict the rms error directly
and use statistical inference based on anomaly amplitude to predict
the anomaly correlation.

More recently, Molteni and Palmer( 1993), Mureau et al (1993),
Buizza (1993), have developed a method to create dynamical
perturbations for ensemble forecasting based on the adjoint method
of Lorenz (1965). They chose the fastest growing linear
perturbations for the first 36 hours of the forecast obtained as
suggested by Lorenz. These perturbations are then combined to
create the initial conditions of an ensemble of 31 forecasts each
run at T63/19L model resolution. This method for ensemble
forecasting was implemented operationally at ECMWF in December
1992, and is run 3 times per week in addition to the daily
operational forecast that is run at T213/31L resolution. The
advantage of this method is that the initial pertubations should be
similar to the fastest growing modes that would also make the
control operational forecast operational drift apart from the real
atmosphere in the first day or two. In addition, the availability
of a large number of forecasts should provide some quantitative
basis for the issuing of probabilistic forecasts. The application
of the ensemble prediction to forecast of the skill and to
probability forecasting is still under development at ECMWF. Human
forecasters in Europe currently have experimental access to the 31
individual forecasts as well as to clusters of forecasts.

At NMC, a different method to generate perturbations for
ensemble forecasting, which should be representative of the fast
growing errors present in the analysis cycle, was developed by Toth
and Kalnay (1993). They use a very simple method denoted "breeding
of growing modes" (BGM), in which the differences between short
perturbed forecasts and the control forecasts are rescaled every 6
hours back to a fixed size similar to the analysis uncertainties,
and then added as a perturbation to the initial condition of the
next period's forecast. This process of repeatedly growing a
perturbation and rescaling it, closely simulates the analysis
cycle, in which a 6-hour forecast starting from an imperfect
analysis grows away from the real atmosphere. The forecast is then
used as a first guess for the next analysis, in which the use of
data "scales down" the difference between the forecast and the
atmosphere. Because the fastest growing errors dominate the growth
in the short range forecast, the analysis cycle is a "breeding
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ground" for fast growing errors, which are damped but not
eliminated by the data. The BGM method mimics this process,
resulting in perturbations with characteristics similar to the
growing errors present in the analysis. The BGM method is used
every day at NMC to create perturbed forecasts at T62 resolution,
extended to 12 days. This, combined with a control forecast and the
extension of the 3-day "Aviation forecasts" results in the daily
availability of 14 forecasts verifying for the same 10-day period.
This method has been used to improve the average ensemble forecast,
and to provide qualitative estimates of the outcome among different
possible forecasts (Tracton and Kalnay, 1993). This ensemble
forecasting system should also provide the basis for probabilistic
forecasting at NMC.

The purpose of this paper is to review the results of a
different method, also developed at NMC, for operational prediction
of the regional forecast skill. This method, which has been
extensively tested, is based on the use of forecasts from multiple
centers, and other predictors of skill (Wobus and Kalnay, 1991).
The NMC system for skill prediction has been running in real time
since 1990, and has actually resulted in better correlations
between predicted and observed skill than those obtained by Barker
(1991). Its output is available in real time to any interested
user through Anonymous File Transfer Protocol (FTP) in Internet
(Appendix). While it is specifically designed to predict the-skill
of the NMC Medium Range Forecast model forecasts (MRF), the
predictors it uses make it a generic prediction of the skill of
various models. Section 2 contains a description of the method;
Section 3 presents daily predictions of the skill for a recent
season (spring of 1993); Section 4 contains comprehensive
statistical verifications for all seasons and all regions of the
world; and Section 5 a summary and discussion of future plans1.

2. The NMC system for prediction of the skill

As indicated in the previous section, predictions of the skill
based on ensembles have been generally based on either Monte Carlo
Forecasting (MCF) or on Lagged Average Forecasting (LAF). For
example, Dalcher et al (1987) tested the LAF method with a 100-day
data set from ECMWF, and showed that the method showed promise in

1 To keep the discussion as clear as possible, we use the term

"forecast" to refer to a forecast of a future state of the
atmosphere, as produced by a numerical model, and the term
"prediction" to refer to a prediction of the skill of a forecast as
measured by the anomaly correlation statistic.
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predicting the skill. However, the decay of the forecast skill

itself with time makes the use of LAF with once-a-day forecasts

undesirable, because forecasts "older" by two or more days have

inital errors much larger than those of the "younger" forecasts

(Tracton et al, 1989).

To avoid this problem, as well as the need to perform

additional LAF or MCF forecasts, we have developed a method in

which the main predictor of skill is the average of the agreement

between the NMC global forecast and other centers' operational

forecasts (McCalla and Kalnay, 1988, Kalnay and Ham, 1989, Wobus

and Kalnay, 1991). We take advantage of the fact that the NMC

Medium Range Forecasts (MRF) are started daily at 00 UTC, whereas

forecasts from three other global forecasting centers (United

Kingdom Meteorological Office, Japan Meteorological Agency and

European Centre for Medium-range Weather Forecasts) are started at

12 UTC. As a result, by the time the NMC MRF forecasts from 00 UTC

become available to the users, forecasts from UKMO, JMA and ECMWF

started 12 hours earlier are also available.

The NMC operational prediction of the skill is based on a

multiple regression scheme using a 60-day training period. Because

it is desirable to provide the forecaster with regional guidance

rather hemispheric or global skill, we have chosen to predict the

regional 500 hPa anomaly correlation of the 00 UTC NMC global

forecast for regions of 30° latitude by 60° longitude covering the

whole globe (Fig. 1). The most important predictor of skill is the

agreement between the NMC medium range global forecast started at

00Z, and four other 12-hour "older" forecasts (JMA, UKEMO, and

ECMWF, as well as the average of the NMC forecast at 00 UTC with

that of the previous day). Since the members of the ensemble of

forecasts are obtained at essentially no additional cost, this can

be considered a "poor person's" Monte Carlo ensemble forecasting

scheme. On the other hand, it can be also considered as the most

sophisticated and advanced ensemble that could be possibly created,

since the ensemble members are made with state-of-the-art forecast

models developed and improved over many years by many scientists,

and the differences in their initial conditions truly reflect the

uncertainties in our knowledge of the real atmosphere.

We produce predictions of the regional skill for the MRF

forecasts at 12 UTC. Since the MRF is started at 00 UTC, the

forecast of the skill is therefore valid for the 12 hr, 36 hr, 2.5

days,..., up to 5.5 forecast days. The upper limit of 5.5 days is

forced by the fact that the UKMO forecasts are only 6-days long.

As mentioned before, the predictand is the regional 500 hPa

anomaly correlation (AC) between the MRF forecast and the analysis,
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i.e., the regional pattern correlation between the forecast minus
climatology and the analysis minus climatology. We have chosen the
anomaly correlation as a measure of skill because it is the most
widely used and easiest to interpret. The AC starts from an
initial value of 1.0 (when the forecast is identical to the
analysis) and, on the average, decays monotonically towards zero.
The value of AC = 0.6, generally considered to be the minimum value
for a forecast to retain useful skill, is attained on the average
at about 6 to 8 days on a hemispheric basis, and somewhat earlier
on a regional basis. On a daily basis, however, the variability of
the AC is very large, with many cases of forecasts maintaining an
AC of over 0.9 for over a week, or dropping below 0.0 in only 2 or
3 days (see, for example Figs. 5-7).

We are currently using three predictors of skill in the
multiple regression scheme; all computed daily for each region and
for each forecast length:

1) Forecast agreement (denoted as AGR), defined as the regional
anomaly correlation between the MRF forecast and each of the other
12 hours "older" forecasts (UKMO, ECMWF and JMA, and the average of
the latest two MRF forecasts). The individual AC between the MRF
forecast and the other four forecasts are then averaged to create
the forecast agreement predictor.

2) Forecast rms anomaly amplitude (RMS), defined as the regional
rms amplitude of the MRF forecast anomaly with respect to
climatology.

3) Forecast persistence (PERS), defined as the regional AC between
the MRF forecast and the initial analysis.

Many other potential predictors of skill were also tested by
Kalnay and Ham (1989), including regional values of baroclinic
instability, Pacific North American (PNA) pattern index, regional
values of the height and zonal and meridional wind values, etc.,
but they were shown to be less useful for the prediction of 0 to 6
day forecast skill than the three predictors chosen above. This
does not mean that their correlation with forecast skill was lower
than RMS and PERS, but that they resulted in less reduction of
variance when combined with AGR. The stepwise regression procedure
used in these tests and in the current skill prediction procedure
attempts to combine predictors that contribute the most independent
information to the regression.

Every day we develop prediction of skill equations for each
region and forecast length by stepwise regression. We use as
training data the same predictors and predictands computed from the
forecasts corresponding to the previous 60 days. We do not
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constrain the regression equations to contain the same predictors
from forecast day to forecast day, or from region to region. Thus,
O.vL eachX cycle, Lere a}re up to 6U f£Lea-i-t a-va-iLaQilaJJe .uiLLm
dependent data, and one from independent data. It should be
pointed out that the most important predictor, by far, is the
forecast agreement, which is selected over 95% of the time,
compared to RMS amplitude and forecast persistence, selected about
70% and 45% of the time respectively (Section 4). With respect to
the length of the training period, experiments done by Kalnay and
Ham (1989) indicated that the use of 60 days was better than using
30 days, and that the results were similar or better than those
obtained using a longer 90 day training period. During our tests
we have found that when 30 to 45 day training periods are used
there are more frequent large errors in skill prediction associated
with regime changes, particularly in the tropics. On the other
hand, the advantage of using a recent series of forecasts is that
the system quickly adapts to changes in the operational models or
analysis systems employed as predictors.

The results of the multiple regression provide for each region
and for all forecast lengths (from 0.5 days to 5.5 days) the
predicted regional anomaly correlation. In addition, the system
provides the average regional AC and the standard deviation of AC
for the training period and the expected error of the predicted AC,
obtained through the reduction of variance from the dependent
sample. In addition, once it is available, the actual observed AC
is provided.

A typical example of the regression equation, averaged for the
spring of 1993, corresponding to region N11 (denoted "North
America") and for the 3.5 day forecast is

AC (NI1,3.5days = 0.66 * AGR + 0.12 * RMS + 0.06 * PER+ 0.08p.red

In this case, the average value of the agreement was 0.83, the
average RMS anomaly (in units of 100 m) was 0.98, and the average
persistence was 0.29. Fig. 5a, discussed in the next section,
shows the daily observed and predicted AC obtained for this period.
It is clear from the coefficients in the equation that the
agreement and the RMS amplitude dominate the contribution to the
prediction of the anomaly correlation.

Figs. 2 a-f presents a sequence of predictions of the skill
for the forecasts from 00 UTC 8 March 1993 through 13 March 1993,
which included the verification of the "great blizzard of 1993"
whose maximum amplitude was observed on 12 UTC March 13 on the east
coast of North America. The forecast of the skill corresponds
again to region Nll ("North America") in Fig. 1. Each figure shows
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with a thin line and vertical shading, the average AC observed in
that region during the training period, as -well as its standard
Ueviationu. oSuper-iposed u on it is the predicted AC andt ile se.v.eu
AC (which is not available in real time) . The forecaster can
therefore observe how today's predicted forecast skill compares
with the average skill of the model during the previous 60 days.
In addition, the predicted skill plot also includes the expected
error (dashed lines), based on the reduction of variance during the
training period. This allows the forecaster to see the confidence
that should be placed on the prediction of skill based on the
training period. If the separation of the dashed lines is small
compared with the width of the training period standard deviation,
this implies a high degree of reduction of variance in the training
period, and conversely, a skill prediction with a high standard
deviation indicates that there is not much information in the
training sample.

The sequence of figures shows that throughout the period 8-13
March 1993, the MRF forecast of the storm was generally excellent,
and that this performance was also correctly predicted, enhancing
the confidence in the forecast of this unusual event.

Figs. 3a and 3b present the 5.5 day forecast from 00 UTC 8
March 1993 and the corresponding verification valid on 12 UTC 13
March 1993, and Fig. 3c shows the error in the 500 hPa field at the
verification time. Fig. 4 shows the forecast of the skill and its
verification for region N9 ("Japan") from 00 UTC 8 March 1993, the
same forecast cycle as in Figs. 2a and 3a. It is interesting to
note that the actual errors in the "North America" and "Japan"
regions are rather similar: they are both dominated by a rather
large dipole of a high and a low oriented in the East-West
direction, although the errors are out of phase. The amplitude of
these dipoles is only slightly larger over "Japan" than over "North
America", and in fact the RMS error is quite similar in both
regions. Nevertheless, since the actual amplitude of the anomaly
was huge over "North America", and relatively small over "Japan",
the general direction of the flow was well predicted over "North
America", but poorly predicted over "Japan". This is reflected in
the prediction of skill over both regions (compare Figs. 4 and 2a),
and both predictions of skill verified well in this case.

This example brings up an advantage of the use of AC as a
measure of skill compared with RMS error. The AC is more of a
relative measure of skill than the RMS error, and therefore is more
useful in the case of large forecast anomalies, in which case the
RMS error is likely to be large. The RMS error is a more absolute
measure of skill, and therefore is more meaningful in the case of
small forecast anomalies, when the AC tends to be poor because the
signal-to-noise ratio is small. Since the forecaster has access to
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the actual forecast and its anomaly with respect to climatology, he

or she can judge the significance of the predicted AC. This also

indicates that the usefulness of RMS amplitude of the forecast
anomaly as a predictor of AC is not simply a result of the fact

that low RMS forecast amplitudes tend to be associated with low
forecast AC due to the signal-to-noise effect, as suggested by
Palmer and Tibaldi (1988). It also provides a useful quantification

of the relative error measured by the AC, as in the above example.

The results of the forecast of the skill are available to the

NMC forecasters as shown above in graphical form, but as indicated

before, they are also available in digital form through the use of

anonymous FTP within Internet (see the Appendix for a documentation

of how to access the NMC public file server in real time).

The example presented above is an exceptionally good example
of predictions of the skill, associated with an excellent forecast

over North America (and a poor forecast over eastern Asia). In the

next section we compare the predicted and observed AC for a
complete season, for a few selected regions, and in Section 4 we

present comprehensive statistics for all regions, forecast lengths

and seasons.

3. Daily results for the spring of 1993

We have shown in Section 2 an example of how the prediction of

the regional forecast anomaly correlation is presented to the
forecaster on a workstation or personal computer. In this section
we present a comparison between 90 days of daily predicted and
observed forecast AC for several representative mid-latitude
Northern Hemisphere regions, as well as for one extratropical
region in the Southern Hemisphere and one tropical region. As will

be shown in the next section, the high latitude (60°-90° ) statistics

are very similar to those of the middle latitudes (30°-60°), so that

in the interest of space we do not present high latitude examples.

In each of the following figures the correlation p between

predicted and observed AC for the whole season is also indicated.

Figs. 5 a-c presents the predicted and observed regional AC
for the 3.5 day forecasts over regions Nll, N7, and N9 ("North

America", "Europe" and "Japan" respectively) verifying during
March, April and May of 1993. The prediction of skill over North

America is excellent (p=0.73), with most of the major maxima and
minima in forecast skill well predicted. It should be noted that

the scheme seems to predict quite well almost all the extreme
events during this period, which is remarkable for a regression

algorithm. Over "Europe", where p=0.48, the variability in skill
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is much lower than over "North America," and the forecast of the
skill is able to capture the low frequency variability in skill,
but not much of the the day-to-day variation. Over "Tnapnr" n= .72,
and the prediction of skill, like over "North America," captures
most of the major maxima and minima, but misses some of the daily
variability. The seasonal trend has not been subtracted from the
AC's, but these figures (and those for the other seasons), do not
show an appreciable effect of the seasonal cycle.

Figs. 6 a-c present the same results but for the 5.5 day
forecast. In this case the correlation p over "Europe" is only
0.34, and in this area the skill prediction scheme is not useful on
a day-to-day basis, although it does seem to capture the
intraseasonal variability in skill. Over North America, the
correlation is 0.45, and although the scheme captures some of the
low frequency variability in skill, it generally underestimates it.
A notable exception is the 6-day period around March 10, when the
scheme consistently and correctly predicted high skill associated
with the forecast of the East Coast blizzard of 93. The 5.5 day
prediction over Japan, on the other hand, continues to be quite
skillful, with the scheme still capturing both high and low
frequency variability, and a correlation p of 0.61.

Finally, Figs. 7 a-b show the 3.5 day prediction of skill for
the mid-latitude region S11 ("Southern Cone") and for the tropical
region S15 ("Australia"). For the "Southern Cone" p=0.61, and the
prediction is quite good, even on a daily basis. For "Australia,"
p=0.61, and most of the skill is attained for the low frequency
variations, as is the case in general for the tropics.

A subjective evaluation of many time series like these suggest
that the prediction of skill should be useful, at least for the low
frequency variability in skill, if the correlation between
predicted and observed anomaly correlation is above 0.4. If it is
above 0.6, then it is probably useful even in the prediction of
day-to-day variability in skill.

4. Statistical verifications for all seasons, regions and forecast
lengths

In this section we present verification statistics for the
two years (8 seasons) for which the skill prediction system has
been operationally available. It should be noted that the
Analysis/Forecast system used for the Medium Range Forecast (MRF)
model at NMC remained relatively stable during this period, which
spans June 1991 through May 1993. Although a number of relatively..
minor improvements were implemented, the only major change was the
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replacement of the Optimal Interpolation (OI) analysis by the

Spectral Statistical Interpolation (SSI, Parrish and Derber, 1992,
Derber et al, 991), a 3 dimei na. variational analysis system,
which took place on June 25 1991. This change, which affected most
dramatically the tropics by eliminating or drastically reducing the
model spinup, influenced the results for the summer season (JJA
1991) both directly and through the 60-day training period.

a) Average statistics for one year.

We now present a number of statistical characteristics of the

skill prediction system averaged for all latitudinal bands in both
hemispheres, and averaged over the last four recent seasons
(summer of 1992 through spring of 1993). It should be noted that

the annual average is obtained as the average of four individual

seasonal averages, so that the correlation p between observed and
predicted AC's is not significantly affected by the seasonal cycle.

In fig. 8 we present the observed Northern Hemisphere regional

anomaly correlations averaged for the four seasons, and for the
latitude bands. It is apparent that the forecast AC of the NMC
medium range model computed regionally remains above 60% till about
day 6, even on the annual average. The skill for mid- and high-
latitudes is virtually identical, and displays the S-shaped,
"convex up" curvature which is characteristic of AC-of forecasts
whose main source of errors is the unstable growth of initial
errors (Reynolds et al., 1994), and for which errors due to model

deficiencies are relatively very small. On the other hand, the AC

over the tropics decreases initially much faster than in the
extratropics, although there seems to be a crossover point at about

day 6. The AC for the tropics exhibits the "concave up" shape that
according to Reynolds et al. (1994) is characteristic of forecasts
whose errors are dominated by model deficiencies, and not by
atmospheric instabilities.

Fig. 9 is like Fig. 8 but showing the forecast agreement
instead of the anomaly correlation. It bears a remarkable
resemblance to Fig. 8. A careful comparison between the two

figures shows that the forecast agreement over mid- and high
latitudes is only marginally higher than the forecast anomaly
correlation with the real atmosphere, whereas for the tropics, the

forecast agreement is actually lower than the AC. The similarity
in shape between the two figures shows that the divergence among
forecasts is dominated also by instabilities in the extratropics
and by differences among the model behaviour, presumably due to
different physical parameterizations, in the tropics. This figure

shows that if we compare the NMC model with an ensemble of 12-hour

"older" operational models, the often repeated statement that "any

14
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two forecasts resemble each other much more than any one of them
resembles the real atmosphere" is not true any more with present
state-of-the-art systems. This realistic divergence among
forecasts coming from different centers is probably one of the most
important reasons for the relative success of the present method
for predicting skill, as will be discussed later.

Fig. 10a presents the correlation p between predicted and
observed AC for the dependent (training) sample. It is somewhat
surprising that the p is significantly higher for the tropical
regions than for the extratropics, reaching a peak of 0.75 at day
2.5 in the tropics. For mid- and high-latitudes, the dependent
sample correlation decreases slowly from about 0.7 at 0.5 days, to
less than 0.6 at day 5.5. Fig. 10b shows the same correlation p
for both the dependent and the independent (actual forecasts)
samples. As could be expected, the scores for the independent
samples are lower than those for the dependent samples, by about 10
to 15%. The mid-latitudes skill in predicting the AC decreases
from 0.65 at day 1.5 to 0.45 at day 5.5. The high latitudes scores
are about 5% lower. Once again, the tropics are the regions where
the forecast of the skill is best. As discussed later in this
section, the higher scores in forecasting the skill over the
tropics is probably due to the fact that the anomaly correlations
themselves are much more variable and have much more low frequency
variability in the tropics than in mid- or high-latitudes, and
therefore there is "more room" to capture variability in the
signal.

In Fig. 10c, we show once again the correlation p for the
actual operational forecasts of the skill, but this time we also
include a similar correlation obtained by Barker (1991) using a
perfect model Monte Carlo ensemble rms spread to predict the rms
forecast error. It is remarkable that our operational results are
actually better than those of the perfect model MC experiments of
Barker, who used a much larger number of ensemble members (120
versus only 4 in the NMC system), and who was not encumbered by
model deficiencies in his simulation. The fact that at short
forecast intervals the MC results are poorer than the NMC results
should not be surprising, since, as mentioned before, a pure MC
approach starts from random pertubations, and therefore has zero
predictive skill at the initial time. The NMC operational system,
on the other hand, starts from very "realistic" perturbations,
since each of the operational systems is a state-of-the-art system,
and each one of their analysis cycles is a "breeding ground" for
the same type of fast growing errors that plague all operational
forecasts (Toth and Kalnay, 1993). Beyond day 3, the results are
more similar between the MC and the operational system, although
the latter- remains clearly superior. The difference between
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Barker's results and those of NMC is important since, as indicated

before, skill predictions with correlations above 0.4 seem to have
cnm$ II 'Zofil I S~ nasn r-i n 1 f r- Ace!-- T f~,ryiine-t7 -c~rna9 =1, 1 Ii t-i, nag

those above 0.6 appear to be quite useful.

There are several additional possible explanations for such
superiority: The NMC system predicts AC, and Barker (1991)
predicts rms error. The NMC system uses other predictors, in

addition to forecast agreement, i.e., forecast persistence, a proxy

for atmospheric stability, and the rms amplitude of the anomaly.

The last predictor is especially useful for predicting AC
(Branstator, 1986), since at low values of the anomaly the signal-

to-noise ratio of the AC becomes small (Palmer and Tibaldi, 1988).

Nevertheless, as shown in the example of the prediction of skill

from the forecast from March 8 1993, we cannot conclude that the
advantage of higher predictability that the AC has when compared to

rms error, is simply a statistical artifact: the rms error over

"Japan" and "North America" were rather similar in both shape and
size, but the anomalous circulation was far stronger over the U.S.

Therefore, an rms error score would have indicated similarly poor
forecasts, whereas the AC score correctly indicated that the
anomalous circulation was not well captured over Japan, and very
well represented over North America.

In addition, it is possible that the "poor person" Monte Carlo

system adopted at NMC, having systems with many more degrees of
freedom than the simpler model of Barker (1991), has more skill
variability, and therefore "more room" to predict the skill. As

mentioned above, we see this effect in Fig 7b ( "Australia", a

tropical region), when compared to the other mid-latitude regions
of Figs. 5 and 7a. This may also explain the difference with the

results of Houtekamer and Derome (1993), who used a "breeding
cycle" to generate analysis errors as well as ensemble
perturbations, instead of starting with random MC perturbations.
When they performed perfect model ensemble forecasts and used, as
Barker, the ensemble spread to forecast the rms errors, they
obtained correlations between 0.4 and 0.47 throughout the first 10

days of the forecast. This relatively low value for a perfect
model system may be due to the use of a T21 quasi-geostrophic

model, with fewer degrees of instability than the real atmosphere
or the operational models.

In Fig. 11 we compare the actual correlations p between

predicted and observed AC for the Southern Hemisphere with those of
the Northern Hemisphere. The scores of the Southern Hemisphere are

about 10% worse for both the tropics and the extratropics, possibly

due to a lower general of skill of the forecasts themselves,

associated with poorer observations and therefore poorer initial-
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conditions.

Fig. i2a compares regional correlations p for several regions
of the Northern Hemisphere, and Fig. 12b, in the Southern
Hemisphere. "North Africa", an example of a tropical region, has
a correlation between predicted and observed AC varying between 0.6
and 0.73, "North America" and "Japan" have values of p between 0.5
and 0.7, and "Europe" starts at 0.62 at day 0.5, but the skill
decreases to only 0.3 at day 5.5. The low correlation over Europe,
and the high correlation over North Africa are probably associated
with a much better overall forecast skill over Europe than over
Africa, and therefore with much smaller forecast skill variability.
The comparison is similar over the Southern Hemisphere (Fig. 12b),
where the three tropical regions "Brazil", "Australia" and "Peru"
maintain a correlation close to 0.6 up to day 3.5, whereas the mid-
latitudes "Southern Cone" has a correlation between 0.45 and 0.55.

Fig. 13 presents the annual average of the percentage of cases
in which the three predictors, forecast agreement, forecast
persistence and rms amplitude of the anomaly, are selected as
predictors for the multiple regression during the training. It
shows that agreement is selected between 90% and 100% of the
predictions, rms amplitude between 65% and 80%, and forecast
persistence in 40% to 50% of the predictions. These percentages
are essentially independent of the forecast length and are also
similar for tropical and extratropical regions. Recall that after
the first predictor is chosen, additional predictors are selected
based on their contribution of additional information in the
regression.

c) Variability over eight seasons.

Next we present some statistics indicating the variability of
the statistics presented above with season. The available data
corresponds to two years starting with the summer (JJA) of 1991,
and ending with the spring (MAM) of 1993. For the sake of brevity,
results are only presented for the forecast length of 3.5 days and
for the Northern Hemisphere.

Fig. 14 shows both the AC and the correlation p for all eight
seasons and for both mid-latitudes and the tropics. For the mid-
latitudes the seasonal dependence is weak, with the average AC at
day 3.5 over 0.85, except during the summers, when it is slightly
lower. The correlation p between predicted and observed AC for
mid-latitudes varies between 0.5 and 0.6, and shows even less
seasonal dependence. The AC in the tropics, like the mid-
latitudes, has the poorest forecast - skill occurs during the
summers, with higher forecast skill during the other seasons,

17



during which intrusions of mid-latitude air masses make the

tropical flow more predictable (G. White, pers. comm.) . In the

tropics it is clear that there is an upward trend in skill with

time during these two years, with an AC of almost 0.8 for the last

3 seasons, presumably associated with the implementation of the SSI

(which took place during the first summer season) and other less

important improvements. The worst correlation p for the tropics
occurred also during the first season, which was affected not only

by the implementation of the SSI at the end of June 1991, but also

but the inhomogeneity of the training period of 60 days previous to

each forecast. The second summer is also relatively poor in the
tropics.

Figs. 15 a-c show for several regions, the actual average AC,

the correlation p between predicted and observed AC for both the

training period (dependent sample) and the actual predictions of

skill (independent sample) . Once again, the individual mid-

latitude regions ("North America," "Europe'" and "Japan") do not

exhibit a clear seasonal dependence of AC, except for lower values

in the summer. "Europe" shows a dramatic improvement of AC after

the implementation of the SSI. "North Africa," like the previous
tropical averages, shows the lowest skill in the summer, and a

clear upward trend in forecast skill.

The correlation p in the same four regions has more

variability but does not show a seasonal trend. On the other hand,

it is very encouraging that there is a certain similarity in the

variation over the 8 seasons between the correlation p obtained for

the training sample (which is the basis for the error bars of the

predicted AC in Fig. 5) and the actual observed correlation p.

This suggests that, to some extent, the average accuracy of the

forecast of the skill can be estimated from the dependent sample.

5. Discussion

We have presented the results of a real time scheme to predict

the global model forecast skill which has been operational at NMC

for over two years, and is also electronically available through

Internet (Appendix). The period for which we have shown results

has been relatively homogeneous for the NMC model, and includes a

major improvement in the analysis (the SSI implemented in June

1991, which affected mostly the tropics, and introduced problems

with the training). We have presented the results for the daily

prediction of skill for the last available season, and

comprehensive- summary regional statistics for all the regions and

latitude bands, as well as their seasonal dependence over the two

years.
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We find that for most mid-latitude regions, and most seasons,
the correlation between observed and predicted skill at 3-4 days is
between 0 4 and 07 hre 1ve th - , 'Is even higher.
An inspection of the daily plots indicates that the predictions of
skill should be useful in if the correlation between predicted and
observed AC is above 0.4, especially in the prediction of the low
frequency variability in the skill. When the correlation is 0.6 or
higher we find that there is significant skill in predicting the
day-to-day variability in forecast AC. A 5-day running mean of the
predicted and observed AC results in a considerable improvement of
the correlations, typically of 0.1 to 0.2, confirming that there is
considerable predictability of low frequency variability in the
skill (Kalnay and Ham, 1989).

Our results are somewhat better than those obtained by Barker
(1991) and by Houtekamer and Derome (1993) using perfect models and
large ensembles. They obtained correlations between predicted and
observed skill of only about 0.3-0.4. Although our results are
less discouraging than theirs, they also confirm that the
prediction of skill is a very difficult problem. This is due to
the fact that-the actual trajectory followed by the atmosphere is
only one of an ensemble of possible trajectories. It would be
possible to perfectly predict the skill of a large ensemble of
forecasts if we compared them against an ensemble of possible
verifications. In practice, however, the atmosphere goes through
a single realization, so that the prediction of the skill of a
single individual forecast or even of an ensemble of forecasts is
much less than perfect, as shown in the experiments of Barker
(1991). This also suggest that in the future we should develop a
system to predict the realiability of probability forecasts, a task
made possible by the implementation of ensemble forecasting at NMC
(Tracton and Kalnay, 1993).

The results of our system can be considered as moderately
encouraging, even though we are using an extremely small ensemble
(4 members in addition to the base NMC forecast) compared to Barker
(1991) and Houtekamer and Derome (1993) who used hundreds of
ensemble members. We attribute this to the fact that we are using
one of the most realistic ensembles possible: The members are
each an operational forecast derived independently in a different
global forecasting center, with initial conditions also derived
from independent analysis cycles. Both the analysis cycles and the
models are somewhat different from each other, and, given the
friendly competition among centers to show good forecast skill,
they represent each a slightly different but most advanced state-
of-the-art system. Therefore, the differences among the analyses
and among the forecast models represent in the most realistic way
the present uncertainties about our knowledge of the state of the
atmosphere and the detailed laws that govern its evolution. For
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this reason, for example, our forecast of the skill starts and

retains a correlation between predicted and observed AC of over 0.6
for several days, whereas Barker (1991), using a perfect model and

a very large ensemble of forecasts (but starting with Monte Carlo
perturbations) had to start with zero correlation at the initial

time.

In addition to the use of very realistic ensemble members, we

are helped by the use of the anomaly correlation as a measure of

skill, rather than the rms error. This also allows the use of an

additional powerful predictor of skill, the anomaly amplitude. As
discussed in Section 2.3 this additional information is not just a

simple exploitation of the "signal-to-noise-ratio" which occurs
both in the forecast agreement and in the actual forecasts AC.
Although it is true that very small anomalies are associated with

low AC as well as with low agreement (Palmer and Tibaldi, 1988),

this is only one advantage of AC. As discussed in the example of

the case of 8 March 1993, the rms errors over the "Japant" and
"North America" regions were quite similar in shape and magnitude.
Nevertheless, the anomaly itself was huge over North America (the
"great Blizzard of 1993"), and relatively small over Japan.
Therefore, the forecast over "North America" captured well the
observed anomalous circulation, whereas over "Japan" the forecast
of the regional circulation was very poor. Therefore, even though

the absolute regional rms errors were quite similar, the forecast
AC was unusually high over "North America" and very low over
"Japan." The forecast of the AC captured correctly this
difference, undoubtedly taking advantage of the additional
information provided by the forecast of the anomaly amplitude
(Branstator, 1986).

The system described here has used the same ensemble members
since the JMA forecasts became available at NMC in 1991. We plan

to add more members to the ensemble as they become available to us

in real time via global telecommunications, such as those from
Canada, Australia, Germany, and the US Navy, which should improve
the short range prediction of skill.

We are considering testing Kalman filtering and/or neural
networks as an alternative to the linear regression method used
here. These methods would eliminate the need for a hard cutoff to

the training period, and would probably simultaneously improve the

timeliness of the prediction model and the response to regime
transitions. The results presented here indicate that there is
enough information in our predictors to use either of these methods

effectively. We are also currently developing new predictors based
on the breeding ensemble (Toth and Kalnay, 1993), to be used in a
manner analogous to the predictors we now use, but for forecast
ranges to 10 days, or, if the ensemble forecasts are extended to a
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month, provide forecast of the skill for appropriate time averages.
Finally, we plan to develop a system to predict the reliability of
probability forecasts based on the NMC ensemble forecasting system.
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Appendix: Access to operational prediction of MRF skill through
Internet

The following 8 datasets are available from NMC through Internet
in the NMC public access files:

wd20rw.skill.mrf0 skill forecasts for today's MRF
wd20rw.skill.mrfl skill forecasts for yesterday's MRF

. . . o

wd20rw.skill.mrf7 skill forecasts for MRF 7 days ago

These datasets are regenerated daily to show the most recent
verifications. The update takes place normally between 09Z and
11Z, but may be as late as 18Z.

Typical commands to download these datasets using anonymous ftp:
type ftp command: ftp sunl.wwb.noaa.gov<cr>
type username: anonymous<cr>
type password: _your_nameoremailaddress_<cr>
change directory: cd /pub
type get command: get wd20rw.skill.mrf0 yourfn<cr>
type bye command: bye<cr>

where yourfn is the name of the file on your computer into which

to download the skill data.

Format of these datasets:
Each dataset consists of 218 lines of 25 characters each.

Each line consists of 5 numbers, each occupying 5 columns.
Lines 1 and 110 consist of year (2 digits), month, day, hour

(always 0), and 0.

Lines 2 through 109 (for the northern hemisphere) and 111

through 218 (for the southern hemisphere) consist of 6 lines (12

hr, 36hr, 60 hr, 84hr, 108hr, 132hr predictions) for each region

(see back). The format is as follows:
tac tsd pac psd vac

in which:
tac=average training anomaly correlation
tsd=standard deviation of training anomaly correlation
pac=predicted anomaly correlation
psd=standard deviation of predicted anomaly correlation
vac=verifying anomaly correlation

These integers should be converted to floating point and
divided by 1000.

The number -9999 represents a missing value, normally a
verifying anomaly correlation for a future time.
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Fig. 1. Locations of the regions for which the skill prediction
is performed.

Fig. 2. Skill predictions with verification for region N11
("North America") for MRF forecasts from OOZ of initial dates:
(a) 8 March 93, (b) 9 March 93, (c) 10 March 93, (d) 11 March
93, (e) 12 March 93, (f) 13 March 93. The "Great Blizzard of
1993" had its maximum amplitude on the East Coast on March 13
1993. In each figure, the shaded area corresponds to the
training period, the thin lines are the forecast of the AC and
its expected error, and the thicker line is the actual AC of the
MRF forecast.

Fig. 3. 500 hPa MRF 5.5 day forecast (a), verification analysis
(b), and error (c), valid 12Z 13 March 1993.

Fig. 4. Skill prediction with verification for region N9
("rJapan"l), for the same forecast cycle as Fig. 2a.

Fig. 5. Predicted (solid) and verifying (dashed) anomaly
correlation for 3.5 day MRF forecasts for (a) region N11il ("North
America"), (b) region N7 ("Europe"), (c) region N9 ("Japan")
verifying during March, April, and May 1993.

Fig. 6. Predicted (solid) and verifying (dashed) anomaly
correlation for 5.5 day MRF forecasts for (a) region N11il ("North
America"), (b) region N7 ("Europe"), (c) region N9 ("Japan")
verifying during March, April, and May 1993.

Fig. 7. Predicted (solid) and verifying (dashed) anomaly
correlation for 3.5 day MRF forecasts for (a) region S11
("Southern Cone"), (b) region S15 ("Australia"), verifying during
March, April, and May 1993.

Fig. 8. Anomaly correlation of MRF forecasts, annual average, by
northern hemisphere latitude band.

Fig. 9. Agreement between MRF and other forecasts, ensemble AC,
annual average, by northern hemisphere latitude band.

Fig. 10. Correlation between predicted and observed AC of MRF
forecasts (a) for dependent sample, (b) comparing dependent and
independent samples, (c) comparing independent sample with

-perfect model MC forecast (Barker, 1991), annual average, by
northern hemisphere latitude band.
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Fig. 11. Correlation between predicted and observed AC of MRF
forecasts for independent sample, annual average, by latitude
band in both hemispheres.

Fig. 12. Correlation between predicted and observed AC of MRF

forecasts for independent sample, annual average by region for

(a) northern hemisphere and (b) southern hemisphere.

Fig. 13. Frequency of selection of predictors, annual average,

by northern hemisphere latitude band. The lines are labeled by

predictor but not by latitude band.

Fig. 14. Correlation between predicted and observed AC of MRF

forecasts for independent sample, by season and latitude band.

Fig. 15. Correlation between predicted and observed AC of MRF

forecasts for dependent (training) and independent sample, with

observed anomaly correlation, by season, for regions (a) N11

("North America"), (b) N7 ("Europe"), (c) N9 ("Japan"), and (d)

N1 ("North Africa").
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